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Convective and absolute instability in the incompressible boundary
layer on a rotating disk in the presence of a uniform magnetic field
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Abstract. The stability of a conducting fluid flow over a rotating disk with a uniform magnetic field applied nor-
mal to the disk, is investigated. It is assumed that the magnetic field is unaffected by the motion of the fluid.
The mean flow and linear stability equations are solved for a range of magnetic field-strength parameters and the
absolute/convective nature of the stability is investigated. It is found that increasing the magnetic field parameter
is in general stabilizing.
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1. Introduction

The flow over a rotating disk in a non-conducting fluid has been extensively studied in the
literature. One reason for this is that the Von-Kármán [1] self-similar solution for the flow
over a rotating disk is one of the few exact solutions of the Navier-Stokes equations for a
fully three-dimensional boundary-layer flow. It is thus argued that the stability characteristics
of this flow, and in particular cross-flow instability, will have some similarities with the stabil-
ity of other fully three-dimensional boundary-layer flows which arise in the important aero-
dynamic context.

Rotating fluid flows in the presence of a magnetic fields are important in many industrial
applications such as electromagnetic stirring of liquid metals. Pao [2] was one of the first to
investigate the flow of an incompressible viscous conducting fluid over a rotating disk when a
circular magnetic field is imposed. He concludes that the presence of the magnetic field thick-
ens the flow boundary layer and also reduces the strength of the axial flowfield. Furthermore,
for sufficiently large values of the applied magnetic field, the boundary layer separates from
the surface of the disk.

In the current paper we consider rotating-disk flow but in a conducting fluid in the presence
of a magnetic field applied normal to the disk. The main aims of the work are to investigate the
stability of this flow. This problem, without the presence of a magnetic field, has been studied in
detail by inter alia Lingwood [3], who presents results on absolute instabilities, Turkyilmazoglu
et al. [4] where compressibility effects are addressed, and Turkyilmazoglu and Gajjar [5], where
results for both convective and absolute instabilities for incompressible flows are discussed. In
[3], and [6], it is shown that double-pole-type singularities of the dispersion relationship also
exist at much lower Reynolds numbers than that required for the flow to be absolutely unstable.
Lingwood [7] has also conducted a series of experiments where it is claimed that the Reynolds
number for the flow to become transitional in her experiments is very close to the critical Rey-
nolds number delinineating regions of absolute and convective instabilities calculated from linear
stabilty theory. However, the suggestion of a global absolutely unstable mode is not supported
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by numerical simulations of the full linearized Navier-Stokes equations conducted by Davies
and Carpenter [8]. Work by Pier [9] suggests that non-linear effects and secondary instability of
the primary absolute instability may be responsible for the sharp transition front observed in
Lingwood’s experiments.

When a normal magnetic field is present, the mean flow velocities can be significantly
affected as shown by Sparrow and Cess [10]. In their work, with the additional effects of heat
transfer, it is found that the presence of a normal magnetic field significantly decreases the
flow velocities in the boundary layer. In the current work the mean flow is essentially the same
as in [10], but without heat-transfer effects. In deriving the mean flow we make use of sim-
ilar assumptions namely that the the effects of the electric field are negligible and that the
magnetic field is unaffected by the fluid motion. Thus, the main effect on the fluid flow is
through the presence of an additional force term, the Lorentz force, in the momentum equa-
tions. These assumptions apply to situations with low magnetic Reynolds numbers where the
magnetic field is dominated by diffusive as opposed to advection effects.

Making use of the above assumption, a self-similar form for the mean flow can be
obtained. By making use of the parallel-flow approximation the linear stability equations
are derived. These equations are then solved numerically by using a spectral method with
arclength continuation. The branch points where the group velocity ∂ω

∂α
tends to zero are

searched for in the α- and ω-planes. The convective and absolute instability characteristics of
the mean velocity profile are discussed. The numerical results show that the range of convec-
tive as well as absolute instability is significantly reduced as the strength of the magnetic field
is increased.

This paper is organized as follows. In Sections 2.1 and 2.2, the general governing equa-
tions of the motion in the rotating frame and the basic flow equations are given. The linear
stability theory is applied in Section 2.3 and the linear disturbance equations governing the
viscous flow are given. The mean flow properties and the stability results are discussed in Sec-
tions 3 and 4.

2. Mathematical formulation

2.1. Governing equations of the flow

We consider the three-dimensional boundary-layer flow of an incompressible, electrically con-
ducting viscous fluid on an infinite disk which rotates about its axis with a constant angular
velocity �k. A uniform magnetic field B = B0k is applied to the system, where k is a unit
vector parallel to the z-axis; see Figure 1.

In order to non-dimensionalize the Navier-Stokes equations, we introduce non-
dimensional quantities r∗, θ∗, z∗, t∗, u∗, v∗,w∗, B∗, and P ∗:

r =Lr∗, z=Lz∗, θ = θ∗, t = L

Uc

t∗, P =ρU2
c P ∗,

u=Ucu
∗, v =Ucv

∗, w =Ucw
∗, B∗ =B0B,

where L is a given length scale, say a fixed radial location, and Uc = L� is a given veloc-
ity scale. For convenience of writing, we shall suppress the * over the non-dimensional
variables.

Thus, relative to non-dimensional cylindrical polar coordinates (r, θ, z) which rotate with
the disk, the full time-dependent, unsteady magnetohydrodynamic equations governing the
viscous fluid flow are as follows:
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Figure 1. A schematic of the flow configuration showing the non-dimensional coordinates (r, θ, z) and correspond-
ing velocities (u, v,w).

(a) (b)

(c)

Figure 2. Plots of the similarity profiles: (a) crossflow velocity F(Z), (b) azimuthal velocity G(Z) and (c) normal
velocity H(Z) for different values of m.

∂u
∂t

+u.∇u +2(k ×u)=−∇(P − 1
2
(k × r)2)+mJ×B+ 1

Re
∇2u, (1a)

∂B
∂t

=∇ × (u ×B)+ 1
Rem

∇2B, (1b)



340 H.A. Jasmine and J.S.B. Gajjar

Figure 3. Magnetic-field strength m vs. h∞m
3
2 .

together with

∇.J =0, ∇ ×E =−∂B
∂t

, ∇.B=0, (1c)

and

J =E +u ×B

is the current density. Here m=σB2
0/(ρ�) is the magnetic interaction parameter, Re=�2L/ν

is the Reynolds number, Rem =σµ0L
2� is the magnetic Reynolds number, µ0 is the magnetic

permeability (which we can take to that of free space), σ is the electrical conductivity of the
fluid, ν is the kinematic viscosity of the fluid. Note that we can write Rem =Re σνµ0. If we
consider mercury at temperature 30◦ C, then σ has the value 106 W−1 m−1, ν =1·2×10−7 m2/s.
Given that µ0 = 4π10−7N/A2, it is clear that the magnetic Reynolds is of the order 10−7

smaller than the Reynolds number of the fluid. These are typical values for many other liq-
uid metals as well. For low-magnetic-Reynolds-number flows, it is therefore assumed that the
effect of the motion of the conducting fluid has a small or neglible effect on the imposed mag-
netic field.

If we consider next typical values for the magnetic interaction parameter m, again for mer-
cury, the density ρ = 1·35 × 104 kg m−3, and taking a rotation speed of 10 revolutions per
second, give m= 1·85 for a magnetic field strength B0 = 0·5 Tesla. In general, the interaction
parameter m takes O(1) values for modest rotation speeds and magnetic field values. This
means that the effect of the magnetic field on the fluid motion represented by the Lorentz
force term mJ ×B in the fluid equations cannot be neglected.

The fluid equations can be written in component form as

∂u

∂t
+u

∂u

∂r
+ v

r

∂u

∂θ
+w

∂u

∂z
− v2

r
−2v − r =−∂P

∂r
+ 1

R2

[
∇2u− 2

r2

∂v

∂θ
− u

r2

]
+mL1, (2a)

∂v

∂t
+u

∂v

∂r
+ v

r

∂v

∂θ
+w

∂v

∂z
+ uv

r
+2u=−1

r

∂P

∂θ
+ 1

R2

[
∇2v + 2

r2

∂u

∂θ
− v

r2

]
+mL2, (2b)

∂w

∂t
+u

∂w

∂r
+ v

r

∂w

∂θ
+w

∂w

∂z
=−∂P

∂z
+ 1

R2
[∇2w]+mL3, (2c)

∂u

∂r
+ 1

r

∂v

∂θ
+ ∂w

∂z
+ u

r
=0, (2d)

where (L1,L2,L3)= (E +u ×B)×B are the components of the Lorentz force.
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(a)

(b)

(c)

Figure 4. Neutral-stability curves in the (a) (R,α),
(b) (R,β), and (c) (R, ε), planes for stationary waves
(ω=0) and various magnetic-field strengths m.

(a)

(b)

(c)

Figure 5. Neutral-stability curves in the (a) (R,α)

and (b) (R,β) representing wave numbers and (c)
(R, ε) wave angle planes for ω = −5 and various
magnetic-field strengths m.

Here, we have a global Reynolds number Re =R2, where R is the Reynolds number based on
the displacement thickness δ = (ν/�)

1
2 . The Laplacian operator in cylindrical coordinates is

∇2 =
(

∂2

∂r2
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
+ 1

r

∂

∂r

)
.

Throughout this analysis, the fluid is assumed to lie in the semi-infinite space z≥0.

2.2. The mean-flow equations

A self-similar solution is sought for the mean flow velocity. The boundary-layer coordinate
Z, which is of order O(1), is defined as Z = zR. The self-similar form for the mean-flow
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(a) (b)

(c) (d)

Figure 6. Neutral-stability curves in the (a) (R,α), (b) (R,β), and (c, d) (R, ε) planes for ω = 4 and different
magnetic-field strengths m.

quantites (with a suffix B denoting a mean-flow quantity), take the form:

(u, v,w,p)= (uB, vB,wB,pB)= [rF (Z), rG(Z),
1
R

H(Z),
1

R2
P(Z)]. (3a)

In addition the magnetic field and electric fields are expressed as

B=k, E = (0,0,E3(z)), (3b)

where ∂E3/∂Z = −2G(Z)/R ensures that the divergence of J equals zero and also that
∇ ×E =0. This gives

(L1,L2,L3)= (−rF (Z),−rG(Z),0).

By taking the electric field to be in the z-direction only, we are assuming that there are no radial
currents set-up both for the mean and perturbed flow. Radial currents can be incorporated into
the analysis by taking a non-zero radial component of the electric field, but this leads to slightly
modified mean flow equations with an additional parameter, see Stephenson [11].

Substitution in the Navier-Stokes equations gives rise to the self-similar equations

F 2 − (G+1)2 +F ′H −F ′′ +mF =0, (4a)

2F(G+1)+G′H −G′′ +m(G+1)=0, (4b)

P ′ +H ′H −H ′′ =0, (4c)

2F +H ′ =0, (4d)
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(b)(a)

(d)(c)

Figure 7. Neutral-stability curves in the (a) (R,α), (b) (R,β), and (c, d) (R, ε) planes for ω=7·9 and different mag-
netic-field strengths m.

where m = σB2
0/ρ� is the magnetic interaction parameter assumed to be a constant. Here,

primes denote derivatives with respect to Z. The appropriate boundary conditions are

F =G=H =0 at Z =0, (5a)

F =0, G=−1, as Z →∞. (5b)

The equations for the mean flow are similar to those formulated by Sparrow and Cess [10],
Thacker et al. [12], and Hossain et al. [13] for a rotating-disk flow when subjected to a uni-
form magnetic field imposed normal to the disk.

It can be shown that the equations imply that H →h∞ where the value of h∞ is a con-
stant vertical velocity of the rotating fluid in the far field above the disk, and it has to be
found numerically in the course of the solution of Equations (4) and (5). The Equations (4)
with m=0 reduce to Von-Kármán’s [1] equations in the non-magnetic case.

2.3. Linear stability equations

Next consider infinitesimal perturbations to Von-Kármán’s self-similarity velocity profiles (4).
The instantaneous non-dimensionalized velocity components imposed on the basic steady flow
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(a) (b)

(c) (d)

Figure 8. Neutral-stability curves in the (a) (R,α), (b) (R,β), and (c, d) (R, ε) planes for ω = 10 and different
magnetic-field strengths m.

u, v, w, and the pressure component p can be expressed as

u(r, θ, z, t)=uB +u′(r, θ, z, t), v(r, θ, z, t)=vB +v′(r, θ, z, t),

w(r, θ, z, t)=wB +w′(r, θ, z, t), p(r, θ, z, t)=pB +p′(r, θ, z, t).

The disturbance components of the above system are determined by solving the form of the
Navier-Stokes equations that result from substituting these quantities in (2), and subtracting
off the mean-flow equations. We linearize the equations for small perturbations. We find that
the linearized Navier-Stokes operator has coefficients independent of θ and hence the dis-
turbances can be decomposed into a normal mode form proportional to eiR(βθ−ωt). Such an
approximation leads the disturbances to be wave-like, separable in θ and t . Consequently, the
perturbations may be assumed to be of the form

(u′, v′,w′, p′)= (̃u[r,Z], ṽ[r,Z], w̃[r,Z], p̃[r,Z])eiR(βθ−ωt) + c.c.,

where β represents the wave number in the azimuthal direction, ω the scaled frequency of the
wave propagating in the disturbance wave direction, and c.c. denotes the complex conjugate.
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(a) (b)

(c) (d)

Figure 9. Neutral-stability curves in the (a) (R,α), (b) (R,β), and (c, d) (R, ε) for ω = 10 and different magnetic-
field strengths m.

The separation in θ and t simplifies the linear system of equations. However, no such sim-
plification arises as far as the r-dependence is concerned (except in the limit for R→∞). The
full linearized partial differential system has to be solved subject to suitable initial conditions
to determine the stability of the flow. By introducing a suitable parallel-flow approximation –
see [6] and [14] for more details – we obtain the reduced sixth-order linear system of equa-
tions. By replacing ũ, ṽ, w̃, and p̃, by f , g, h, and p, respectively, we have

f ′′ −Hf ′ − [iR(αF +βG− ω̄)+λ2 +F +m]f +2(G+1)g −RF ′h− iαRp =0, (6a)

g′′ −Hg′ − [iR(αF +βG− ω̄)+λ2 +F +m]g −2(G+1)f −RG′h− iβRp =0, (6b)

h′′ −Hh′ − [iR(αF +βG− ω̄)+λ2 +H ′]h−Rp′ =0, (6c)

ᾱf + iβg +h′ =0, (6d)

where α is the spatial wave-number, ω̄=ω/R,λ2 =α2 +β2, ᾱ= iα+R−1. For the non-magnetic
case, the linear equation system above is identical to the one used by previous investigators,
such as Malik [15].
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(a)

(b)

(c)

Figure 10. Stability curves showing contours of growth rates in the (a) (R,α), (b) (R,β), and (c) (R, ε) for ω = 0
and m = 1.

The boundary conditions for this set of equations are f =g=h=0 at the solid wall (Z=0)

together with decay of disturbance at Z =∞.

3. Solution of the linear equations

Several methods are available for solving the linearized stability equations. In our study we
solve this system of equations by using the same spectral method as in [5] but also include
arclength continuation. The spectral approximation is based on Chebyshev collocation with
a staggered grid for the pressure terms in the normal direction. For a fuller description of
the method, see [6]. When Newton’s method fails to converge at a turning point, we use in
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(a) (b)

(c) (d)

Figure 11. Stability curves showing growth rates in the (a) (R,α), (b) (R,β), and (c, d) (R, ε) for ω = 10
and m = 1.

addition the arclength continuation method. Thus, we encounter no difficulties at a limit
point or at a vertical inflection point.

3.1. Solution of the mean flow

The mean flow Equations (4) are solved using a finite-difference method employing the
Numerical Algorithms Group (NAG) routine D02RAF. The corresponding normal velocity
h∞ is then evaluated. In Figure 2 we show plots of the similarity profiles F(Z),G(Z),H(Z)

vs. Z for different values of m. The results clearly demonstrate that increasing m leads to a
reduction in the magnitude of the mean velocity as compared to the non-magnetic case for
fixed Z.

For large m, the Equations (4) and (5) can be solved analytically, as in [10]. We expand
the basic velocity components as

F =m−1F0(z)+· · · , G=G0(z)+· · · , H =m−3/2H0(z)+· · · , (7a,b,c)
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(a)

(b)

(c)

Figure 12. Spatial amplication rates for zero-fre-
quency waves as a function of wave numbers (a)
(αi , αr ), (b) (αi , β), and wave angle (c) (αi , ε) for
R = 600 and different values of m.

(a)

(b)

(c)

Figure 13. Spatial amplication rates of travelling
waves with a frequency of ω = 10 as a function of
wave numbers (a) (αi , αr ), (b) (αi , β), and wave angle
(c) (αi , ε) for R =600 and different values of m.

where z =m1/2Z. Substituing the above expansions in the Equations (4) and equating terms
of order one, we obtain

(G0 +1)−G′′
0 =0, F0 − (G0 +1)2 −F ′′

0 =0, 2F0 +H ′
0 =0.

The solution of this system is

F0 = 1
3
(e−z − e−2z), G0 = (e−z −1), H0 = 2

3
(e−z + 1

2
e−2z)− 1

3
.

Substituting for F0,G0 and H0 into Equations (7) yields

F =m−1
[

1
3
(e−z−e−2z)

]
+··· , G=(e−z−1)+··· , H =m− 3

2

[
2
3
(e−z−e−2z)− 1

3

]
+··· .

(8a,b,c)
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(a) (b)

(c)

Figure 14. Magnetic field m versus (a) αm−1/2 and (b) βm1/2 and (c) φm for R =1000. The dashed line shows the
asymptotic limit.

When z̄→∞, this gives

h∞ =−1
3
m− 3

2 or h∞m
3
2 =−1

3
. (9)

Figure 3 exhibits a plot of m vs. h∞m3/2. It shows that, when m is large, then h∞m3/2

approaches the constant value −1/3 , which is equal to the value obtained analytically.

3.2. Stability results

Having discussed the properties of the mean flow, we next analyze the stability of this flow.
Instability modes can be classed into two distinct types, convectively unstable modes and
absolutely unstable modes. We will first discuss convective instability.

Convectively unstable modes can be further sub-divided into two classes, namely station-
ary waves, for which the frequency ω=0 and travelling waves for which ω is non-zero.

The wave angle ε of a disturbance is defined as ε = tan−1[β/αr ]. In Figure 4, we display
the neutral curves for stationary disturbances in the (R,α), (R,β), (R, ε), planes for several
values of m. These figures indicate the presence of two minimum. One minimum is located
on the upper branch associated with the inviscid-type instability, whereas the other minimum
lies on the lower branch related to viscous-type instability.

The data show that an increase in the magnetic-field-strength parameter leads to an
increase in the values of critical Reynolds numbers. Compared to the non-magnetic case, for
m=1 there is almost a threefold increase in the critical Reynolds number. Figure 4(c) shows
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(a) (b)

(c) (d)

(e)

Figure 15. Neutral absolute instability curves in (a) (R,αr ), (b) (R,αi), (c) (R,β), (d) (R,ω), and (R, ε) planes for
different values of m.

that increasing m causes the band of wave angles for instability to be reduced and shifted to
much smaller wave angles.

Travelling waves are defined for non-zero values of the frequency ω. The neutral curves
for travelling waves in the (R,α), (R,β), and (R, ε) plans are shown in Figures (5–9) for neg-
ative as well as several positive non-dimensional frequencies and for several values of the
magnetic field strength m. Similar curves are also shown in [5] in the absence of a magnetic
field. It is noticed that a minimum occurs on the lower branch for certain frequencies. The
existence of such second minima was also observed in the experiments of Faller and Kay-
lor [16]. They demonstrated that viscous-type as well as inviscid-type disturbances were pos-
sible in the Ekman boundary layer in the rotating-disk flow. Therefore, it was suggested that
the travelling modes are more important since they have smaller critical Reynolds numbers.
In the non-magnetic case the lowest critical Reynolds number occurs for a frequency ω=7·9.
For the magnetic case, this is no longer true. For instance, the critical value of the Reynolds
number for m= 1 is 764·64 for ω = 10 as compared to 1091·9 for ω = 7·9; see Figures 7 and
10. For travelling waves Figures 5–8 show that the flow is stabilized, as compared to the
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(a) (b)

(c) (d)

Figure 16. Plots showing the pinching phenomena mor m = 0·2 with a branch point at β = 0·137, α =
(0·23774,−0·10983), ω = (−22·66,0·006) and R = 703·83. Figures are, respectively, for (a) ωi = 0·5, (b) ωi = 0·006
(pinching point), and (c) ωi =0, (d) all together.

non-magnetic case, for increasing m. In Figure 5 with ω=−5 we observe that the lower min-
imum disappears from the lower branch in all the graphs. Again, for travelling waves increas-
ing the magnetic-field parameter causes the unstable wave angles to be reduced and to be
moved to smaller angles.

In Figures 10 and 11 some results for contours of growth rates for stationary and travel-
ling waves are shown for m= 1. The effect of varying the field strength on the growth rate,
at a fixed Reynolds number, can be seen in Figures 12 and 13. Increasing m reduces the
peak growth rate. The figures also demonstrate the dramatic reduction in the unstable wave
angles for increasing m. For travelling waves the unstable negative wave angles disappear as
m increases; see Figure 13.

3.3. Some asymptotic stability properties

Following Hall [17], it is possible to derive estimates for the behaviour of the neutral wave
numbers in the large-Reynolds-number limit for some special cases. In particular, for large
m – see Jasmine [18] for further details – it can be shown that for stationary waves on the
upper-branch, the wave numbers have the expansion

(α,β, c)= (α0, β0, c0)+R− 1
6 (α1, β1, c1)+· · · . (10)

The analysis shows that

β0

rα0
= 1

9m
, α0 ≈ γ̄ m

1
2 . (11)
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Here, γ̄ is O(1) constant, which can be determined by solving Rayleigh’s equation.
For the lower branch the wave numbers are expanded as

(α,β)= (α0, β0)+R− 1
8 (α1, β1)+· · · . (12)

It is found that for large m

α ≈2·62m5/4r−1/2, β ≈0·78m1/4r1/2, φ = tan ε̂ = β

α
=0·298m−1r. (13a,b,c)

The predictions (13) are tested against the full numerical solution of the equations (6) for
large m at a fixed Reynolds number. Figure 14 show that the results are consistent with (13).

4. Absolute-instability results

Using a Newton-Raphson search procedure, we have solved the system of equations and
searched for branch points of the dispersion relationship. For m = 0, the eigenvalues we
obtain agree with those derived earlier by Lingwood [3] and Turkyilmazoglu and Gajjar [5].
The Briggs [19, Chapter 2] criterion has been employed with fixed parameters β and R to
distinguish between absolutely and convectively unstable flows.

The neutral absolute instability curves in the (R,αr), (R,αi), (R,β), (R,ωr), and (R, ε)

planes are shown in Figure 15 for several values of magnetic-field-strength parameter. Inside
the curves, the imaginary part of the frequency ω is positive and thus the particular flow there
is absolutely unstable.

For m = 0, the eigenvalues we obtain agree with those derived earlier by Turkyilmazo-
glu and Gajjar [5]. Figure 16 shows the pinching phenomennon for m= 0·2, R = 703·83 and
β =0·137. For large positive values of ωi , the branches shown lie in the distinct halves of the
α-plane. At the pinch point, ωi is 0·006, and so this point exhibits absolute instability.

5. Conclusions

The stability of the flow over a rotating disk when a magnetic field normal to the disk is
imposed has been investigated. The stability parameters for the stationary and non-stationary
waves have been computed. Using a spectral and arclength continuation methods, stability
diagrams were produced. Neutral-stability curves were sketched for various real frequencies
and several values of the magnetic field strength m.

The major finding is that the presence of a normal magnetic field is stabilizing as com-
pared to the non-magnetic case, for both the convective as well as the absolutely unstable
modes. Increasing the magnetic strength parameter leads to increased stability. The main rea-
son for this behaviour is that the presence of the magnetic field, seen via the Lorentz-force
term, cause the mean velocities to be significantly reduced as compared to the non-magnetic
case.

For large values of the magnetic-strength parameter, an analytical solution of the mean-
flow equations exists and this has been used to obtain estimates for the behaviour of the
eigenvalues in the stability problem in certain special cases.

In this paper, we have considered only the normal magnetic field. For a circular magnetic
field the results are expected to be very different from those presented here because the mean
boundary layer behaves very differently for large values of the applied field strength. In fact,
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for a circular magnetic field, one would expect the flow to become more unstable with increas-
ing value of the magnetic-strength parameter. In addition, we have considered flows which
have low magnetic Reynolds numbers and neglected the influence of the fluid motion on the
imposed field. Whilst this may be appropriate for many liquid metals, in plasmas the mag-
netic Reynolds number can assume values which are not small, and the coupled fluid mag-
netic interactions here can be significant and cannot be neglected.
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